Mock sample for your project: PolicyClient API

Integrate with "PolicyClient API" from azure.com in no time with Mockoon's ready to use mock sample

PolicyClient

azure.com

Version: 2019-09-01


Use this API in your project

Integrate third-party APIs faster by using "PolicyClient API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

To manage and control access to your resources, you can define customized policies and assign them at a scope.

Other APIs by azure.com

Azure Alerts Management Service Resource Provider

azure.com
Azure Alerts Management Service provides a single pane of glass of alerts across Azure Monitor.

Azure Enterprise Knowledge Graph Service

azure.com
Azure Enterprise Knowledge Graph Service is a platform for creating knowledge graphs at scale.

Azure DevOps

azure.com
Azure DevOps Resource Provider

DiskResourceProviderClient

azure.com
The Disk Resource Provider Client.

ApiManagementClient

azure.com
Use this REST API to get all the issues across an Azure Api Management service.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on NamedValue entity associated with your Azure API Management deployment. API Management policies are a powerful capability of the system that allow the publisher to change the behavior of the API through configuration. Policies are a collection of statements that are executed sequentially on the request or response of an API. Policy statements can be constructed using literal text values, policy expressions, and NamedValues. Each API Management service instance has a NamedValues collection of key/value pairs that are global to the service instance. These NamedValues can be used to manage constant string values across all API configuration and policies.

FabricAdminClient

azure.com
Storage system operation endpoints and objects.

UpdateAdminClient

azure.com
The Update Admin Management Client.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Identity Provider entity associated with your Azure API Management deployment. Setting up an external Identity Provider for authentication can help you manage the developer portal logins using the OAuth2 flow.

ApiManagementClient

azure.com
Use these REST APIs for performing operations in Azure API Management deployment.

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for Components.

Management Groups

azure.com
The Azure Management Groups API enables consolidation of multiple subscriptions/resources into an organizational hierarchy and centrally manage access control, policies, alerting and reporting for those resources.

Other APIs in the same category

elmah.io API

elmah.io
This is the public REST API for elmah.io. All of the integrations communicates with elmah.io through this API. For additional help getting started with the API, visit the following help articles: Using the REST API Where is my API key? Where is my log ID? How to configure API key permissions

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

Amazon CloudWatch

Amazon CloudWatch monitors your Amazon Web Services (Amazon Web Services) resources and the applications you run on Amazon Web Services in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with Amazon Web Services, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health.

AzureBridgeAdminClient

azure.com
AzureBridge Admin Client.
This is AWS WAF Classic documentation. For more information, see AWS WAF Classic in the developer guide. For the latest version of AWS WAF, use the AWS WAFV2 API and see the AWS WAF Developer Guide. With the latest version, AWS WAF has a single set of endpoints for regional and global use. This is the AWS WAF Classic API Reference for using AWS WAF Classic with Amazon CloudFront. The AWS WAF Classic actions and data types listed in the reference are available for protecting Amazon CloudFront distributions. You can use these actions and data types via the endpoint waf.amazonaws.com. This guide is for developers who need detailed information about the AWS WAF Classic API actions, data types, and errors. For detailed information about AWS WAF Classic features and an overview of how to use the AWS WAF Classic API, see the AWS WAF Classic in the developer guide.
Amazon MQ is a managed message broker service for Apache ActiveMQ and RabbitMQ that makes it easy to set up and operate message brokers in the cloud. A message broker allows software applications and components to communicate using various programming languages, operating systems, and formal messaging protocols.

Redshift Data API Service

You can use the Amazon Redshift Data API to run queries on Amazon Redshift tables. You can run SQL statements, which are committed if the statement succeeds. For more information about the Amazon Redshift Data API, see Using the Amazon Redshift Data API in the Amazon Redshift Cluster Management Guide.

Azure Alerts Management Service Resource Provider

azure.com
Azure Alerts Management Service provides a single pane of glass of alerts across Azure Monitor.

AWS Well-Architected Tool

AWS Well-Architected Tool This is the AWS Well-Architected Tool API Reference. The AWS Well-Architected Tool API provides programmatic access to the AWS Well-Architected Tool in the AWS Management Console. For information about the AWS Well-Architected Tool, see the AWS Well-Architected Tool User Guide.

Amazon Kinesis Video Streams

Amazon Timestream Write

Amazon Timestream is a fast, scalable, fully managed time series database service that makes it easy to store and analyze trillions of time series data points per day. With Timestream, you can easily store and analyze IoT sensor data to derive insights from your IoT applications. You can analyze industrial telemetry to streamline equipment management and maintenance. You can also store and analyze log data and metrics to improve the performance and availability of your applications. Timestream is built from the ground up to effectively ingest, process, and store time series data. It organizes data to optimize query processing. It automatically scales based on the volume of data ingested and on the query volume to ensure you receive optimal performance while inserting and querying data. As your data grows over time, Timestream’s adaptive query processing engine spans across storage tiers to provide fast analysis while reducing costs.

Amazon WorkDocs

The WorkDocs API is designed for the following use cases: File Migration: File migration applications are supported for users who want to migrate their files from an on-premises or off-premises file system or service. Users can insert files into a user directory structure, as well as allow for basic metadata changes, such as modifications to the permissions of files. Security: Support security applications are supported for users who have additional security needs, such as antivirus or data loss prevention. The API actions, along with AWS CloudTrail, allow these applications to detect when changes occur in Amazon WorkDocs. Then, the application can take the necessary actions and replace the target file. If the target file violates the policy, the application can also choose to email the user. eDiscovery/Analytics: General administrative applications are supported, such as eDiscovery and analytics. These applications can choose to mimic or record the actions in an Amazon WorkDocs site, along with AWS CloudTrail, to replicate data for eDiscovery, backup, or analytical applications. All Amazon WorkDocs API actions are Amazon authenticated and certificate-signed. They not only require the use of the AWS SDK, but also allow for the exclusive use of IAM users and roles to help facilitate access, trust, and permission policies. By creating a role and allowing an IAM user to access the Amazon WorkDocs site, the IAM user gains full administrative visibility into the entire Amazon WorkDocs site (or as set in the IAM policy). This includes, but is not limited to, the ability to modify file permissions and upload any file to any user. This allows developers to perform the three use cases above, as well as give users the ability to grant access on a selective basis using the IAM model.