Mock sample for your project: RecoveryServicesBackupClient API

Integrate with "RecoveryServicesBackupClient API" from azure.com in no time with Mockoon's ready to use mock sample

RecoveryServicesBackupClient

azure.com

Version: 2019-06-15


Use this API in your project

Speed up your application development by using "RecoveryServicesBackupClient API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
It also improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Other APIs by azure.com

Security Center

azure.com
API spec for Microsoft.Security (Azure Security Center) resource provider

SqlManagementClient

azure.com
The Azure SQL Database management API provides a RESTful set of web APIs that interact with Azure SQL Database services to manage your databases. The API enables users to create, retrieve, update, and delete databases, servers, and other entities.

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

PolicyStatesClient

azure.com

ManagementLinkClient

azure.com
Azure resources can be linked together to form logical relationships. You can establish links between resources belonging to different resource groups. However, all the linked resources must belong to the same subscription. Each resource can be linked to 50 other resources. If any of the linked resources are deleted or moved, the link owner must clean up the remaining link.

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

RecoveryServicesBackupClient

azure.com

MonitorManagementClient

azure.com

Security Insights

azure.com
API spec for Microsoft.SecurityInsights (Azure Security Insights) resource provider

StorageManagementClient

azure.com
The Azure Storage Management API.

SqlManagementClient

azure.com
The Azure SQL Database management API provides a RESTful set of web APIs that interact with Azure SQL Database services to manage your databases. The API enables users to create, retrieve, update, and delete databases, servers, and other entities.

SqlManagementClient

azure.com
The Azure SQL Database management API provides a RESTful set of web APIs that interact with Azure SQL Database services to manage your databases. The API enables users to create, retrieve, update, and delete databases, servers, and other entities.

Other APIs in the same category

QnAMaker Client

azure.com
An API for QnAMaker Service

ApiManagementClient

azure.com
Use these REST APIs for performing operations in Azure API Management deployment.

Amazon Comprehend

Amazon Comprehend is an AWS service for gaining insight into the content of documents. Use these actions to determine the topics contained in your documents, the topics they discuss, the predominant sentiment expressed in them, the predominant language used, and more.

AWSMarketplace Metering

AWS Marketplace Metering Service This reference provides descriptions of the low-level AWS Marketplace Metering Service API. AWS Marketplace sellers can use this API to submit usage data for custom usage dimensions. For information on the permissions you need to use this API, see AWS Marketing metering and entitlement API permissions in the AWS Marketplace Seller Guide. Submitting Metering Records MeterUsage - Submits the metering record for a Marketplace product. MeterUsage is called from an EC2 instance or a container running on EKS or ECS. BatchMeterUsage - Submits the metering record for a set of customers. BatchMeterUsage is called from a software-as-a-service (SaaS) application. Accepting New Customers ResolveCustomer - Called by a SaaS application during the registration process. When a buyer visits your website during the registration process, the buyer submits a Registration Token through the browser. The Registration Token is resolved through this API to obtain a CustomerIdentifier and Product Code. Entitlement and Metering for Paid Container Products Paid container software products sold through AWS Marketplace must integrate with the AWS Marketplace Metering Service and call the RegisterUsage operation for software entitlement and metering. Free and BYOL products for Amazon ECS or Amazon EKS aren't required to call RegisterUsage, but you can do so if you want to receive usage data in your seller reports. For more information on using the RegisterUsage operation, see Container-Based Products. BatchMeterUsage API calls are captured by AWS CloudTrail. You can use Cloudtrail to verify that the SaaS metering records that you sent are accurate by searching for records with the eventName of BatchMeterUsage. You can also use CloudTrail to audit records over time. For more information, see the AWS CloudTrail User Guide .

Elastic Load Balancing

Elastic Load Balancing A load balancer can distribute incoming traffic across your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered instances and ensures that it routes traffic only to healthy instances. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer and a protocol and port number for connections from the load balancer to the instances. Elastic Load Balancing supports three types of load balancers: Application Load Balancers, Network Load Balancers, and Classic Load Balancers. You can select a load balancer based on your application needs. For more information, see the Elastic Load Balancing User Guide. This reference covers the 2012-06-01 API, which supports Classic Load Balancers. The 2015-12-01 API supports Application Load Balancers and Network Load Balancers. To get started, create a load balancer with one or more listeners using CreateLoadBalancer. Register your instances with the load balancer using RegisterInstancesWithLoadBalancer. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds with a 200 OK response code.

AWS Cost Explorer Service

You can use the Cost Explorer API to programmatically query your cost and usage data. You can query for aggregated data such as total monthly costs or total daily usage. You can also query for granular data. This might include the number of daily write operations for Amazon DynamoDB database tables in your production environment. Service Endpoint The Cost Explorer API provides the following endpoint: https://ce.us-east-1.amazonaws.com For information about the costs that are associated with the Cost Explorer API, see Amazon Web Services Cost Management Pricing.

CodeArtifact

AWS CodeArtifact is a fully managed artifact repository compatible with language-native package managers and build tools such as npm, Apache Maven, and pip. You can use CodeArtifact to share packages with development teams and pull packages. Packages can be pulled from both public and CodeArtifact repositories. You can also create an upstream relationship between a CodeArtifact repository and another repository, which effectively merges their contents from the point of view of a package manager client. AWS CodeArtifact Components Use the information in this guide to help you work with the following CodeArtifact components: Repository : A CodeArtifact repository contains a set of package versions, each of which maps to a set of assets, or files. Repositories are polyglot, so a single repository can contain packages of any supported type. Each repository exposes endpoints for fetching and publishing packages using tools like the npm CLI, the Maven CLI ( mvn ), and pip . Domain : Repositories are aggregated into a higher-level entity known as a domain. All package assets and metadata are stored in the domain, but are consumed through repositories. A given package asset, such as a Maven JAR file, is stored once per domain, no matter how many repositories it's present in. All of the assets and metadata in a domain are encrypted with the same customer master key (CMK) stored in AWS Key Management Service (AWS KMS). Each repository is a member of a single domain and can't be moved to a different domain. The domain allows organizational policy to be applied across multiple repositories, such as which accounts can access repositories in the domain, and which public repositories can be used as sources of packages. Although an organization can have multiple domains, we recommend a single production domain that contains all published artifacts so that teams can find and share packages across their organization. Package : A package is a bundle of software and the metadata required to resolve dependencies and install the software. CodeArtifact supports npm, PyPI, and Maven package formats. In CodeArtifact, a package consists of: A name (for example, webpack is the name of a popular npm package) An optional namespace (for example, @types in @types/node) A set of versions (for example, 1.0.0, 1.0.1, 1.0.2, etc.) Package-level metadata (for example, npm tags) Package version : A version of a package, such as @types/node 12.6.9. The version number format and semantics vary for different package formats. For example, npm package versions must conform to the Semantic Versioning specification. In CodeArtifact, a package version consists of the version identifier, metadata at the package version level, and a set of assets. Upstream repository : One repository is upstream of another when the package versions in it can be accessed from the repository endpoint of the downstream repository, effectively merging the contents of the two repositories from the point of view of a client. CodeArtifact allows creating an upstream relationship between two repositories. Asset : An individual file stored in CodeArtifact associated with a package version, such as an npm.tgz file or Maven POM and JAR files. CodeArtifact supports these operations: AssociateExternalConnection : Adds an existing external connection to a repository. CopyPackageVersions : Copies package versions from one repository to another repository in the same domain. CreateDomain : Creates a domain CreateRepository : Creates a CodeArtifact repository in a domain. DeleteDomain : Deletes a domain. You cannot delete a domain that contains repositories. DeleteDomainPermissionsPolicy : Deletes the resource policy that is set on a domain. DeletePackageVersions : Deletes versions of a package. After a package has been deleted, it can be republished, but its assets and metadata cannot be restored because they have been permanently removed from storage. DeleteRepository : Deletes a repository. DeleteRepositoryPermissionsPolicy : Deletes the resource policy that is set on a repository. DescribeDomain : Returns a DomainDescription object that contains information about the requested domain. DescribePackageVersion : Returns a PackageVersionDescription object that contains details about a package version. DescribeRepository : Returns a RepositoryDescription object that contains detailed information about the requested repository. DisposePackageVersions : Disposes versions of a package. A package version with the status Disposed cannot be restored because they have been permanently removed from storage. DisassociateExternalConnection : Removes an existing external connection from a repository. GetAuthorizationToken : Generates a temporary authorization token for accessing repositories in the domain. The token expires the authorization period has passed. The default authorization period is 12 hours and can be customized to any length with a maximum of 12 hours. GetDomainPermissionsPolicy : Returns the policy of a resource that is attached to the specified domain. GetPackageVersionAsset : Returns the contents of an asset that is in a package version. GetPackageVersionReadme : Gets the readme file or descriptive text for a package version. GetRepositoryEndpoint : Returns the endpoint of a repository for a specific package format. A repository has one endpoint for each package format: npm pypi maven GetRepositoryPermissionsPolicy : Returns the resource policy that is set on a repository. ListDomains : Returns a list of DomainSummary objects. Each returned DomainSummary object contains information about a domain. ListPackages : Lists the packages in a repository. ListPackageVersionAssets : Lists the assets for a given package version. ListPackageVersionDependencies : Returns a list of the direct dependencies for a package version. ListPackageVersions : Returns a list of package versions for a specified package in a repository. ListRepositories : Returns a list of repositories owned by the AWS account that called this method. ListRepositoriesInDomain : Returns a list of the repositories in a domain. PutDomainPermissionsPolicy : Attaches a resource policy to a domain. PutRepositoryPermissionsPolicy : Sets the resource policy on a repository that specifies permissions to access it. UpdatePackageVersionsStatus : Updates the status of one or more versions of a package. UpdateRepository : Updates the properties of a repository.

Amazon DynamoDB

Amazon DynamoDB Amazon DynamoDB is a fully managed NoSQL database service that provides fast and predictable performance with seamless scalability. DynamoDB lets you offload the administrative burdens of operating and scaling a distributed database, so that you don't have to worry about hardware provisioning, setup and configuration, replication, software patching, or cluster scaling. With DynamoDB, you can create database tables that can store and retrieve any amount of data, and serve any level of request traffic. You can scale up or scale down your tables' throughput capacity without downtime or performance degradation, and use the AWS Management Console to monitor resource utilization and performance metrics. DynamoDB automatically spreads the data and traffic for your tables over a sufficient number of servers to handle your throughput and storage requirements, while maintaining consistent and fast performance. All of your data is stored on solid state disks (SSDs) and automatically replicated across multiple Availability Zones in an AWS region, providing built-in high availability and data durability.

Auto Scaling

Amazon EC2 Auto Scaling Amazon EC2 Auto Scaling is designed to automatically launch or terminate EC2 instances based on user-defined scaling policies, scheduled actions, and health checks. For more information about Amazon EC2 Auto Scaling, see the Amazon EC2 Auto Scaling User Guide. For information about granting IAM users required permissions for calls to Amazon EC2 Auto Scaling, see Granting IAM users required permissions for Amazon EC2 Auto Scaling resources in the Amazon EC2 Auto Scaling API Reference.

Amazon CloudWatch

Amazon CloudWatch monitors your Amazon Web Services (Amazon Web Services) resources and the applications you run on Amazon Web Services in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with Amazon Web Services, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health.

AWS Network Firewall

This is the API Reference for AWS Network Firewall. This guide is for developers who need detailed information about the Network Firewall API actions, data types, and errors. The REST API requires you to handle connection details, such as calculating signatures, handling request retries, and error handling. For general information about using the AWS REST APIs, see AWS APIs. To access Network Firewall using the REST API endpoint: https://network-firewall..amazonaws.com Alternatively, you can use one of the AWS SDKs to access an API that's tailored to the programming language or platform that you're using. For more information, see AWS SDKs. For descriptions of Network Firewall features, including and step-by-step instructions on how to use them through the Network Firewall console, see the Network Firewall Developer Guide. Network Firewall is a stateful, managed, network firewall and intrusion detection and prevention service for Amazon Virtual Private Cloud (Amazon VPC). With Network Firewall, you can filter traffic at the perimeter of your VPC. This includes filtering traffic going to and coming from an internet gateway, NAT gateway, or over VPN or AWS Direct Connect. Network Firewall uses rules that are compatible with Suricata, a free, open source intrusion detection system (IDS) engine. For information about Suricata, see the Suricata website. You can use Network Firewall to monitor and protect your VPC traffic in a number of ways. The following are just a few examples: Allow domains or IP addresses for known AWS service endpoints, such as Amazon S3, and block all other forms of traffic. Use custom lists of known bad domains to limit the types of domain names that your applications can access. Perform deep packet inspection on traffic entering or leaving your VPC. Use stateful protocol detection to filter protocols like HTTPS, regardless of the port used. To enable Network Firewall for your VPCs, you perform steps in both Amazon VPC and in Network Firewall. For information about using Amazon VPC, see Amazon VPC User Guide. To start using Network Firewall, do the following: (Optional) If you don't already have a VPC that you want to protect, create it in Amazon VPC. In Amazon VPC, in each Availability Zone where you want to have a firewall endpoint, create a subnet for the sole use of Network Firewall. In Network Firewall, create stateless and stateful rule groups, to define the components of the network traffic filtering behavior that you want your firewall to have. In Network Firewall, create a firewall policy that uses your rule groups and specifies additional default traffic filtering behavior. In Network Firewall, create a firewall and specify your new firewall policy and VPC subnets. Network Firewall creates a firewall endpoint in each subnet that you specify, with the behavior that's defined in the firewall policy. In Amazon VPC, use ingress routing enhancements to route traffic through the new firewall endpoints.

AWS EC2 Instance Connect

Amazon EC2 Instance Connect enables system administrators to publish one-time use SSH public keys to EC2, providing users a simple and secure way to connect to their instances.