Mock sample for your project: Managed Streaming for Kafka API

Integrate with "Managed Streaming for Kafka API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Managed Streaming for Kafka

amazonaws.com

Version: 2018-11-14


Use this API in your project

Integrate third-party APIs faster by using "Managed Streaming for Kafka API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
Improve your integration tests by mocking third-party APIs and cover more edge cases: slow response time, random failures, etc.

Description

The operations for managing an Amazon MSK cluster.

Other APIs by amazonaws.com

Amazon ElastiCache

Amazon ElastiCache Amazon ElastiCache is a web service that makes it easier to set up, operate, and scale a distributed cache in the cloud. With ElastiCache, customers get all of the benefits of a high-performance, in-memory cache with less of the administrative burden involved in launching and managing a distributed cache. The service makes setup, scaling, and cluster failure handling much simpler than in a self-managed cache deployment. In addition, through integration with Amazon CloudWatch, customers get enhanced visibility into the key performance statistics associated with their cache and can receive alarms if a part of their cache runs hot.

Amazon CloudHSM

AWS CloudHSM Service This is documentation for AWS CloudHSM Classic. For more information, see AWS CloudHSM Classic FAQs, the AWS CloudHSM Classic User Guide, and the AWS CloudHSM Classic API Reference. For information about the current version of AWS CloudHSM, see AWS CloudHSM, the AWS CloudHSM User Guide, and the AWS CloudHSM API Reference.

Amazon AppStream

Amazon AppStream 2.0 This is the Amazon AppStream 2.0 API Reference. This documentation provides descriptions and syntax for each of the actions and data types in AppStream 2.0. AppStream 2.0 is a fully managed, secure application streaming service that lets you stream desktop applications to users without rewriting applications. AppStream 2.0 manages the AWS resources that are required to host and run your applications, scales automatically, and provides access to your users on demand. You can call the AppStream 2.0 API operations by using an interface VPC endpoint (interface endpoint). For more information, see Access AppStream 2.0 API Operations and CLI Commands Through an Interface VPC Endpoint in the Amazon AppStream 2.0 Administration Guide. To learn more about AppStream 2.0, see the following resources: Amazon AppStream 2.0 product page Amazon AppStream 2.0 documentation
Amazon EventBridge Schema Registry

Amazon Personalize Events

Amazon Personalize can consume real-time user event data, such as stream or click data, and use it for model training either alone or combined with historical data. For more information see Recording Events.

AWS Marketplace Commerce Analytics

Provides AWS Marketplace business intelligence data on-demand.

Amazon AppConfig

AWS AppConfig Use AWS AppConfig, a capability of AWS Systems Manager, to create, manage, and quickly deploy application configurations. AppConfig supports controlled deployments to applications of any size and includes built-in validation checks and monitoring. You can use AppConfig with applications hosted on Amazon EC2 instances, AWS Lambda, containers, mobile applications, or IoT devices. To prevent errors when deploying application configurations, especially for production systems where a simple typo could cause an unexpected outage, AppConfig includes validators. A validator provides a syntactic or semantic check to ensure that the configuration you want to deploy works as intended. To validate your application configuration data, you provide a schema or a Lambda function that runs against the configuration. The configuration deployment or update can only proceed when the configuration data is valid. During a configuration deployment, AppConfig monitors the application to ensure that the deployment is successful. If the system encounters an error, AppConfig rolls back the change to minimize impact for your application users. You can configure a deployment strategy for each application or environment that includes deployment criteria, including velocity, bake time, and alarms to monitor. Similar to error monitoring, if a deployment triggers an alarm, AppConfig automatically rolls back to the previous version. AppConfig supports multiple use cases. Here are some examples. Application tuning : Use AppConfig to carefully introduce changes to your application that can only be tested with production traffic. Feature toggle : Use AppConfig to turn on new features that require a timely deployment, such as a product launch or announcement. Allow list : Use AppConfig to allow premium subscribers to access paid content. Operational issues : Use AppConfig to reduce stress on your application when a dependency or other external factor impacts the system. This reference is intended to be used with the AWS AppConfig User Guide.

Amazon Neptune

Amazon Neptune Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. The core of Amazon Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with milliseconds latency. Amazon Neptune supports popular graph models Property Graph and W3C's RDF, and their respective query languages Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune powers graph use cases such as recommendation engines, fraud detection, knowledge graphs, drug discovery, and network security. This interface reference for Amazon Neptune contains documentation for a programming or command line interface you can use to manage Amazon Neptune. Note that Amazon Neptune is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide.
IoT IoT provides secure, bi-directional communication between Internet-connected devices (such as sensors, actuators, embedded devices, or smart appliances) and the Amazon Web Services cloud. You can discover your custom IoT-Data endpoint to communicate with, configure rules for data processing and integration with other services, organize resources associated with each device (Registry), configure logging, and create and manage policies and credentials to authenticate devices. The service endpoints that expose this API are listed in Amazon Web Services IoT Core Endpoints and Quotas. You must use the endpoint for the region that has the resources you want to access. The service name used by Amazon Web Services Signature Version 4 to sign the request is: execute-api. For more information about how IoT works, see the Developer Guide. For information about how to use the credentials provider for IoT, see Authorizing Direct Calls to Amazon Web Services Services.
Amazon MQ is a managed message broker service for Apache ActiveMQ and RabbitMQ that makes it easy to set up and operate message brokers in the cloud. A message broker allows software applications and components to communicate using various programming languages, operating systems, and formal messaging protocols.

AWS Cost and Usage Report Service

The AWS Cost and Usage Report API enables you to programmatically create, query, and delete AWS Cost and Usage report definitions. AWS Cost and Usage reports track the monthly AWS costs and usage associated with your AWS account. The report contains line items for each unique combination of AWS product, usage type, and operation that your AWS account uses. You can configure the AWS Cost and Usage report to show only the data that you want, using the AWS Cost and Usage API. Service Endpoint The AWS Cost and Usage Report API provides the following endpoint: cur.us-east-1.amazonaws.com

AWS IoT Greengrass V2

IoT Greengrass brings local compute, messaging, data management, sync, and ML inference capabilities to edge devices. This enables devices to collect and analyze data closer to the source of information, react autonomously to local events, and communicate securely with each other on local networks. Local devices can also communicate securely with Amazon Web Services IoT Core and export IoT data to the Amazon Web Services Cloud. IoT Greengrass developers can use Lambda functions and components to create and deploy applications to fleets of edge devices for local operation. IoT Greengrass Version 2 provides a new major version of the IoT Greengrass Core software, new APIs, and a new console. Use this API reference to learn how to use the IoT Greengrass V2 API operations to manage components, manage deployments, and core devices. For more information, see What is IoT Greengrass? in the IoT Greengrass V2 Developer Guide.

Other APIs in the same category

Custom Image Search Client

microsoft.com
The Bing Custom Image Search API lets you send an image search query to Bing and get back image search results customized to meet your custom search definition.

AppPlatformManagementClient

azure.com
REST API for Azure Spring Cloud

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Tag entity in your Azure API Management deployment. Tags can be assigned to APIs, Operations and Products.

AWS Service Catalog App Registry

Amazon Web Services Service Catalog AppRegistry enables organizations to understand the application context of their Amazon Web Services resources. AppRegistry provides a repository of your applications, their resources, and the application metadata that you use within your enterprise.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

AuthorizationManagementClient

azure.com
Role based access control provides you a way to apply granular level policy administration down to individual resources or resource groups. These operations enable you to manage role assignments. A role assignment grants access to Azure Active Directory users.

Azure Log Analytics Query Packs

azure.com
Azure Log Analytics API reference for Query Packs management.

Amazon CloudSearch Domain

You use the AmazonCloudSearch2013 API to upload documents to a search domain and search those documents. The endpoints for submitting UploadDocuments, Search, and Suggest requests are domain-specific. To get the endpoints for your domain, use the Amazon CloudSearch configuration service DescribeDomains action. The domain endpoints are also displayed on the domain dashboard in the Amazon CloudSearch console. You submit suggest requests to the search endpoint. For more information, see the Amazon CloudSearch Developer Guide.

AWS Budgets

The AWS Budgets API enables you to use AWS Budgets to plan your service usage, service costs, and instance reservations. The API reference provides descriptions, syntax, and usage examples for each of the actions and data types for AWS Budgets. Budgets provide you with a way to see the following information: How close your plan is to your budgeted amount or to the free tier limits Your usage-to-date, including how much you've used of your Reserved Instances (RIs) Your current estimated charges from AWS, and how much your predicted usage will accrue in charges by the end of the month How much of your budget has been used AWS updates your budget status several times a day. Budgets track your unblended costs, subscriptions, refunds, and RIs. You can create the following types of budgets: Cost budgets - Plan how much you want to spend on a service. Usage budgets - Plan how much you want to use one or more services. RI utilization budgets - Define a utilization threshold, and receive alerts when your RI usage falls below that threshold. This lets you see if your RIs are unused or under-utilized. RI coverage budgets - Define a coverage threshold, and receive alerts when the number of your instance hours that are covered by RIs fall below that threshold. This lets you see how much of your instance usage is covered by a reservation. Service Endpoint The AWS Budgets API provides the following endpoint: https://budgets.amazonaws.com For information about costs that are associated with the AWS Budgets API, see AWS Cost Management Pricing.

AttestationClient

azure.com
Describes the interface for the per-tenant enclave service.

Control API v1

ably.net
Use the Control API to manage your applications, namespaces, keys, queues, rules, and more.
Detailed information on using this API can be found in the Ably developer documentation.
Control API is currently in Beta.

ApiManagementClient

azure.com
Use these REST APIs to get the analytics reports associated with your Azure API Management deployment.