Mock sample for your project: Managed Streaming for Kafka API

Integrate with "Managed Streaming for Kafka API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Managed Streaming for Kafka

amazonaws.com

Version: 2018-11-14


Use this API in your project

Integrate third-party APIs faster by using "Managed Streaming for Kafka API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
Improve your integration tests by mocking third-party APIs and cover more edge cases: slow response time, random failures, etc.

Description

The operations for managing an Amazon MSK cluster.

Other APIs by amazonaws.com

Amazon Neptune

Amazon Neptune Amazon Neptune is a fast, reliable, fully-managed graph database service that makes it easy to build and run applications that work with highly connected datasets. The core of Amazon Neptune is a purpose-built, high-performance graph database engine optimized for storing billions of relationships and querying the graph with milliseconds latency. Amazon Neptune supports popular graph models Property Graph and W3C's RDF, and their respective query languages Apache TinkerPop Gremlin and SPARQL, allowing you to easily build queries that efficiently navigate highly connected datasets. Neptune powers graph use cases such as recommendation engines, fraud detection, knowledge graphs, drug discovery, and network security. This interface reference for Amazon Neptune contains documentation for a programming or command line interface you can use to manage Amazon Neptune. Note that Amazon Neptune is asynchronous, which means that some interfaces might require techniques such as polling or callback functions to determine when a command has been applied. In this reference, the parameter descriptions indicate whether a command is applied immediately, on the next instance reboot, or during the maintenance window. The reference structure is as follows, and we list following some related topics from the user guide.

Amazon Textract

Amazon Textract detects and analyzes text in documents and converts it into machine-readable text. This is the API reference documentation for Amazon Textract.

AWS Single Sign-On

AWS Single Sign-On Portal is a web service that makes it easy for you to assign user access to AWS SSO resources such as the user portal. Users can get AWS account applications and roles assigned to them and get federated into the application. For general information about AWS SSO, see What is AWS Single Sign-On? in the AWS SSO User Guide. This API reference guide describes the AWS SSO Portal operations that you can call programatically and includes detailed information on data types and errors. AWS provides SDKs that consist of libraries and sample code for various programming languages and platforms, such as Java, Ruby, .Net, iOS, or Android. The SDKs provide a convenient way to create programmatic access to AWS SSO and other AWS services. For more information about the AWS SDKs, including how to download and install them, see Tools for Amazon Web Services.

Amazon SageMaker Feature Store Runtime

Contains all data plane API operations and data types for the Amazon SageMaker Feature Store. Use this API to put, delete, and retrieve (get) features from a feature store. Use the following operations to configure your OnlineStore and OfflineStore features, and to create and manage feature groups: CreateFeatureGroup DeleteFeatureGroup DescribeFeatureGroup ListFeatureGroups

AWSServerlessApplicationRepository

The AWS Serverless Application Repository makes it easy for developers and enterprises to quickly find
and deploy serverless applications in the AWS Cloud. For more information about serverless applications,
see Serverless Computing and Applications on the AWS website. The AWS Serverless Application Repository is deeply integrated with the AWS Lambda console, so that developers of
all levels can get started with serverless computing without needing to learn anything new. You can use category
keywords to browse for applications such as web and mobile backends, data processing applications, or chatbots.
You can also search for applications by name, publisher, or event source. To use an application, you simply choose it,
configure any required fields, and deploy it with a few clicks. You can also easily publish applications, sharing them publicly with the community at large, or privately
within your team or across your organization. To publish a serverless application (or app), you can use the
AWS Management Console, AWS Command Line Interface (AWS CLI), or AWS SDKs to upload the code. Along with the
code, you upload a simple manifest file, also known as the AWS Serverless Application Model (AWS SAM) template.
For more information about AWS SAM, see AWS Serverless Application Model (AWS SAM) on the AWS Labs
GitHub repository. The AWS Serverless Application Repository Developer Guide contains more information about the two developer
experiences available:
Consuming Applications – Browse for applications and view information about them, including
source code and readme files. Also install, configure, and deploy applications of your choosing.
Publishing Applications – Configure and upload applications to make them available to other
developers, and publish new versions of applications.

Amazon Simple Systems Manager (SSM)

Amazon Web Services Systems Manager is a collection of capabilities that helps you automate management tasks such as collecting system inventory, applying operating system (OS) patches, automating the creation of Amazon Machine Images (AMIs), and configuring operating systems (OSs) and applications at scale. Systems Manager lets you remotely and securely manage the configuration of your managed instances. A managed instance is any Amazon Elastic Compute Cloud instance (EC2 instance), or any on-premises server or virtual machine (VM) in your hybrid environment that has been configured for Systems Manager. This reference is intended to be used with the Amazon Web Services Systems Manager User Guide. To get started, verify prerequisites and configure managed instances. For more information, see Setting up Amazon Web Services Systems Manager in the Amazon Web Services Systems Manager User Guide. Related resources For information about how to use a Query API, see Making API requests. For information about other API operations you can perform on EC2 instances, see the Amazon EC2 API Reference. For information about AppConfig, a capability of Systems Manager, see the AppConfig User Guide and the AppConfig API Reference. For information about Incident Manager, a capability of Systems Manager, see the Incident Manager User Guide and the Incident Manager API Reference.

AWS Service Catalog

AWS Service Catalog AWS Service Catalog enables organizations to create and manage catalogs of IT services that are approved for AWS. To get the most out of this documentation, you should be familiar with the terminology discussed in AWS Service Catalog Concepts.

Amazon Rekognition

This is the Amazon Rekognition API reference.

Amazon Lex Runtime Service

Amazon Lex provides both build and runtime endpoints. Each endpoint provides a set of operations (API). Your conversational bot uses the runtime API to understand user utterances (user input text or voice). For example, suppose a user says "I want pizza", your bot sends this input to Amazon Lex using the runtime API. Amazon Lex recognizes that the user request is for the OrderPizza intent (one of the intents defined in the bot). Then Amazon Lex engages in user conversation on behalf of the bot to elicit required information (slot values, such as pizza size and crust type), and then performs fulfillment activity (that you configured when you created the bot). You use the build-time API to create and manage your Amazon Lex bot. For a list of build-time operations, see the build-time API, .

Amazon Fraud Detector

This is the Amazon Fraud Detector API Reference. This guide is for developers who need detailed information about Amazon Fraud Detector API actions, data types, and errors. For more information about Amazon Fraud Detector features, see the Amazon Fraud Detector User Guide.

Amazon SimpleDB

Amazon SimpleDB is a web service providing the core database functions of data indexing and querying in the cloud. By offloading the time and effort associated with building and operating a web-scale database, SimpleDB provides developers the freedom to focus on application development. A traditional, clustered relational database requires a sizable upfront capital outlay, is complex to design, and often requires extensive and repetitive database administration. Amazon SimpleDB is dramatically simpler, requiring no schema, automatically indexing your data and providing a simple API for storage and access. This approach eliminates the administrative burden of data modeling, index maintenance, and performance tuning. Developers gain access to this functionality within Amazon's proven computing environment, are able to scale instantly, and pay only for what they use. Visit http://aws.amazon.com/simpledb/ for more information.

Amazon FSx

Amazon FSx is a fully managed service that makes it easy for storage and application administrators to launch and use shared file storage.

Other APIs in the same category

Azure IoT Central

azure.com
Azure IoT Central is a service that makes it easy to connect, monitor, and manage your IoT devices at scale.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Subscription entity associated with your Azure API Management deployment. The Subscription entity represents the association between a user and a product in API Management. Products contain one or more APIs, and once a product is published, developers can subscribe to the product and begin to use the product’s APIs.

BlockchainManagementClient

azure.com
REST API for Azure Blockchain Service

AutomationManagement

azure.com

Elastic Load Balancing

Elastic Load Balancing A load balancer can distribute incoming traffic across your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered instances and ensures that it routes traffic only to healthy instances. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer and a protocol and port number for connections from the load balancer to the instances. Elastic Load Balancing supports three types of load balancers: Application Load Balancers, Network Load Balancers, and Classic Load Balancers. You can select a load balancer based on your application needs. For more information, see the Elastic Load Balancing User Guide. This reference covers the 2012-06-01 API, which supports Classic Load Balancers. The 2015-12-01 API supports Application Load Balancers and Network Load Balancers. To get started, create a load balancer with one or more listeners using CreateLoadBalancer. Register your instances with the load balancer using RegisterInstancesWithLoadBalancer. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds with a 200 OK response code.

Access Analyzer

Identity and Access Management Access Analyzer helps identify potential resource-access risks by enabling you to identify any policies that grant access to an external principal. It does this by using logic-based reasoning to analyze resource-based policies in your Amazon Web Services environment. An external principal can be another Amazon Web Services account, a root user, an IAM user or role, a federated user, an Amazon Web Services service, or an anonymous user. You can also use IAM Access Analyzer to preview and validate public and cross-account access to your resources before deploying permissions changes. This guide describes the Identity and Access Management Access Analyzer operations that you can call programmatically. For general information about IAM Access Analyzer, see Identity and Access Management Access Analyzer in the IAM User Guide. To start using IAM Access Analyzer, you first need to create an analyzer.

AWS Batch

Batch Using Batch, you can run batch computing workloads on the Cloud. Batch computing is a common means for developers, scientists, and engineers to access large amounts of compute resources. Batch uses the advantages of this computing workload to remove the undifferentiated heavy lifting of configuring and managing required infrastructure. At the same time, it also adopts a familiar batch computing software approach. Given these advantages, Batch can help you to efficiently provision resources in response to jobs submitted, thus effectively helping you to eliminate capacity constraints, reduce compute costs, and deliver your results more quickly. As a fully managed service, Batch can run batch computing workloads of any scale. Batch automatically provisions compute resources and optimizes workload distribution based on the quantity and scale of your specific workloads. With Batch, there's no need to install or manage batch computing software. This means that you can focus your time and energy on analyzing results and solving your specific problems.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on logger entity Azure API Management deployment.The Logger entity in API Management represents an event sink that you can use to log API Management events. Currently the Logger entity supports logging API Management events to Azure EventHub.

FabricAdminClient

azure.com
Application operation results.

AWS Data Exchange

AWS Data Exchange is a service that makes it easy for AWS customers to exchange data in the cloud. You can use the AWS Data Exchange APIs to create, update, manage, and access file-based data set in the AWS Cloud. As a subscriber, you can view and access the data sets that you have an entitlement to through a subscription. You can use the APIS to download or copy your entitled data sets to Amazon S3 for use across a variety of AWS analytics and machine learning services. As a provider, you can create and manage your data sets that you would like to publish to a product. Being able to package and provide your data sets into products requires a few steps to determine eligibility. For more information, visit the AWS Data Exchange User Guide. A data set is a collection of data that can be changed or updated over time. Data sets can be updated using revisions, which represent a new version or incremental change to a data set. A revision contains one or more assets. An asset in AWS Data Exchange is a piece of data that can be stored as an Amazon S3 object. The asset can be a structured data file, an image file, or some other data file. Jobs are asynchronous import or export operations used to create or copy assets.

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for web test locations.

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for web test based alerting.