Mock sample for your project: Amazon Elastic Block Store API

Integrate with "Amazon Elastic Block Store API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon Elastic Block Store

amazonaws.com

Version: 2019-11-02


Use this API in your project

Speed up your application development by using "Amazon Elastic Block Store API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and allow you to stop relying on an external API to get the job done. No more API keys to provision, accesses to configure or unplanned downtime, just work.
Enhance your development infrastructure by mocking third party APIs during integrating testing.

Description

You can use the Amazon Elastic Block Store (Amazon EBS) direct APIs to create Amazon EBS snapshots, write data directly to your snapshots, read data on your snapshots, and identify the differences or changes between two snapshots. If you’re an independent software vendor (ISV) who offers backup services for Amazon EBS, the EBS direct APIs make it more efficient and cost-effective to track incremental changes on your Amazon EBS volumes through snapshots. This can be done without having to create new volumes from snapshots, and then use Amazon Elastic Compute Cloud (Amazon EC2) instances to compare the differences. You can create incremental snapshots directly from data on-premises into volumes and the cloud to use for quick disaster recovery. With the ability to write and read snapshots, you can write your on-premises data to an snapshot during a disaster. Then after recovery, you can restore it back to Amazon Web Services or on-premises from the snapshot. You no longer need to build and maintain complex mechanisms to copy data to and from Amazon EBS. This API reference provides detailed information about the actions, data types, parameters, and errors of the EBS direct APIs. For more information about the elements that make up the EBS direct APIs, and examples of how to use them effectively, see Accessing the Contents of an Amazon EBS Snapshot in the Amazon Elastic Compute Cloud User Guide. For more information about the supported Amazon Web Services Regions, endpoints, and service quotas for the EBS direct APIs, see Amazon Elastic Block Store Endpoints and Quotas in the Amazon Web Services General Reference.

Other APIs by amazonaws.com

AWS Directory Service

Directory Service Directory Service is a web service that makes it easy for you to setup and run directories in the Amazon Web Services cloud, or connect your Amazon Web Services resources with an existing self-managed Microsoft Active Directory. This guide provides detailed information about Directory Service operations, data types, parameters, and errors. For information about Directory Services features, see Directory Service and the Directory Service Administration Guide. Amazon Web Services provides SDKs that consist of libraries and sample code for various programming languages and platforms (Java, Ruby, .Net, iOS, Android, etc.). The SDKs provide a convenient way to create programmatic access to Directory Service and other Amazon Web Services services. For more information about the Amazon Web Services SDKs, including how to download and install them, see Tools for Amazon Web Services.

Amazon MemoryDB

MemoryDB for Redis is a fully managed, Redis-compatible, in-memory database that delivers ultra-fast performance and Multi-AZ durability for modern applications built using microservices architectures. MemoryDB stores the entire database in-memory, enabling low latency and high throughput data access. It is compatible with Redis, a popular open source data store, enabling you to leverage Redis’ flexible and friendly data structures, APIs, and commands.

AWS Cost and Usage Report Service

The AWS Cost and Usage Report API enables you to programmatically create, query, and delete AWS Cost and Usage report definitions. AWS Cost and Usage reports track the monthly AWS costs and usage associated with your AWS account. The report contains line items for each unique combination of AWS product, usage type, and operation that your AWS account uses. You can configure the AWS Cost and Usage report to show only the data that you want, using the AWS Cost and Usage API. Service Endpoint The AWS Cost and Usage Report API provides the following endpoint: cur.us-east-1.amazonaws.com

AWS IoT Analytics

IoT Analytics allows you to collect large amounts of device data, process messages, and store them. You can then query the data and run sophisticated analytics on it. IoT Analytics enables advanced data exploration through integration with Jupyter Notebooks and data visualization through integration with Amazon QuickSight. Traditional analytics and business intelligence tools are designed to process structured data. IoT data often comes from devices that record noisy processes (such as temperature, motion, or sound). As a result the data from these devices can have significant gaps, corrupted messages, and false readings that must be cleaned up before analysis can occur. Also, IoT data is often only meaningful in the context of other data from external sources. IoT Analytics automates the steps required to analyze data from IoT devices. IoT Analytics filters, transforms, and enriches IoT data before storing it in a time-series data store for analysis. You can set up the service to collect only the data you need from your devices, apply mathematical transforms to process the data, and enrich the data with device-specific metadata such as device type and location before storing it. Then, you can analyze your data by running queries using the built-in SQL query engine, or perform more complex analytics and machine learning inference. IoT Analytics includes pre-built models for common IoT use cases so you can answer questions like which devices are about to fail or which customers are at risk of abandoning their wearable devices.

AWS Elemental MediaPackage VOD

AWS Elemental MediaPackage VOD

Amazon CloudHSM

AWS CloudHSM Service This is documentation for AWS CloudHSM Classic. For more information, see AWS CloudHSM Classic FAQs, the AWS CloudHSM Classic User Guide, and the AWS CloudHSM Classic API Reference. For information about the current version of AWS CloudHSM, see AWS CloudHSM, the AWS CloudHSM User Guide, and the AWS CloudHSM API Reference.

AWS S3 Control

Amazon Web Services S3 Control provides access to Amazon S3 control plane actions.

Amazon Route 53

Amazon Route 53 is a highly available and scalable Domain Name System (DNS) web service.

Amazon CodeGuru Reviewer

This section provides documentation for the Amazon CodeGuru Reviewer API operations. CodeGuru Reviewer is a service that uses program analysis and machine learning to detect potential defects that are difficult for developers to find and recommends fixes in your Java and Python code. By proactively detecting and providing recommendations for addressing code defects and implementing best practices, CodeGuru Reviewer improves the overall quality and maintainability of your code base during the code review stage. For more information about CodeGuru Reviewer, see the Amazon CodeGuru Reviewer User Guide. To improve the security of your CodeGuru Reviewer API calls, you can establish a private connection between your VPC and CodeGuru Reviewer by creating an interface VPC endpoint. For more information, see CodeGuru Reviewer and interface VPC endpoints (Amazon Web Services PrivateLink) in the Amazon CodeGuru Reviewer User Guide.

AWS CloudHSM V2

For more information about AWS CloudHSM, see AWS CloudHSM and the AWS CloudHSM User Guide.

Amazon Sagemaker Edge Manager

SageMaker Edge Manager dataplane service for communicating with active agents.

AWS Outposts

AWS Outposts is a fully managed service that extends AWS infrastructure, APIs, and tools to customer premises. By providing local access to AWS managed infrastructure, AWS Outposts enables customers to build and run applications on premises using the same programming interfaces as in AWS Regions, while using local compute and storage resources for lower latency and local data processing needs.

Other APIs in the same category

iotDpsClient

azure.com
API for using the Azure IoT Hub Device Provisioning Service features.

Amazon Route 53 Resolver

When you create a VPC using Amazon VPC, you automatically get DNS resolution within the VPC from Route 53 Resolver. By default, Resolver answers DNS queries for VPC domain names such as domain names for EC2 instances or Elastic Load Balancing load balancers. Resolver performs recursive lookups against public name servers for all other domain names. You can also configure DNS resolution between your VPC and your network over a Direct Connect or VPN connection: Forward DNS queries from resolvers on your network to Route 53 Resolver DNS resolvers on your network can forward DNS queries to Resolver in a specified VPC. This allows your DNS resolvers to easily resolve domain names for Amazon Web Services resources such as EC2 instances or records in a Route 53 private hosted zone. For more information, see How DNS Resolvers on Your Network Forward DNS Queries to Route 53 Resolver in the Amazon Route 53 Developer Guide. Conditionally forward queries from a VPC to resolvers on your network You can configure Resolver to forward queries that it receives from EC2 instances in your VPCs to DNS resolvers on your network. To forward selected queries, you create Resolver rules that specify the domain names for the DNS queries that you want to forward (such as example.com), and the IP addresses of the DNS resolvers on your network that you want to forward the queries to. If a query matches multiple rules (example.com, acme.example.com), Resolver chooses the rule with the most specific match (acme.example.com) and forwards the query to the IP addresses that you specified in that rule. For more information, see How Route 53 Resolver Forwards DNS Queries from Your VPCs to Your Network in the Amazon Route 53 Developer Guide. Like Amazon VPC, Resolver is Regional. In each Region where you have VPCs, you can choose whether to forward queries from your VPCs to your network (outbound queries), from your network to your VPCs (inbound queries), or both.
IoT IoT provides secure, bi-directional communication between Internet-connected devices (such as sensors, actuators, embedded devices, or smart appliances) and the Amazon Web Services cloud. You can discover your custom IoT-Data endpoint to communicate with, configure rules for data processing and integration with other services, organize resources associated with each device (Registry), configure logging, and create and manage policies and credentials to authenticate devices. The service endpoints that expose this API are listed in Amazon Web Services IoT Core Endpoints and Quotas. You must use the endpoint for the region that has the resources you want to access. The service name used by Amazon Web Services Signature Version 4 to sign the request is: execute-api. For more information about how IoT works, see the Developer Guide. For information about how to use the credentials provider for IoT, see Authorizing Direct Calls to Amazon Web Services Services.

Amazon Elastic File System

Amazon Elastic File System Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use with Amazon EC2 instances in the Amazon Web Services Cloud. With Amazon EFS, storage capacity is elastic, growing and shrinking automatically as you add and remove files, so your applications have the storage they need, when they need it. For more information, see the Amazon Elastic File System API Reference and the Amazon Elastic File System User Guide.

ApiManagementClient

azure.com
Use this REST API to get all the issues across an Azure Api Management service.

AWS App Runner

AWS App Runner AWS App Runner is an application service that provides a fast, simple, and cost-effective way to go directly from an existing container image or source code to a running service in the AWS cloud in seconds. You don't need to learn new technologies, decide which compute service to use, or understand how to provision and configure AWS resources. App Runner connects directly to your container registry or source code repository. It provides an automatic delivery pipeline with fully managed operations, high performance, scalability, and security. For more information about App Runner, see the AWS App Runner Developer Guide. For release information, see the AWS App Runner Release Notes. To install the Software Development Kits (SDKs), Integrated Development Environment (IDE) Toolkits, and command line tools that you can use to access the API, see Tools for Amazon Web Services. Endpoints For a list of Region-specific endpoints that App Runner supports, see AWS App Runner endpoints and quotas in the AWS General Reference.

StorageManagementClient

azure.com
The Admin Storage Management Client.

Amazon Translate

Provides translation between one source language and another of the same set of languages.

AutomationManagement

azure.com

AWS Single Sign-On

AWS Single Sign-On Portal is a web service that makes it easy for you to assign user access to AWS SSO resources such as the user portal. Users can get AWS account applications and roles assigned to them and get federated into the application. For general information about AWS SSO, see What is AWS Single Sign-On? in the AWS SSO User Guide. This API reference guide describes the AWS SSO Portal operations that you can call programatically and includes detailed information on data types and errors. AWS provides SDKs that consist of libraries and sample code for various programming languages and platforms, such as Java, Ruby, .Net, iOS, or Android. The SDKs provide a convenient way to create programmatic access to AWS SSO and other AWS services. For more information about the AWS SDKs, including how to download and install them, see Tools for Amazon Web Services.

AutomationManagement

azure.com

AWS WAF Regional

This is AWS WAF Classic Regional documentation. For more information, see AWS WAF Classic in the developer guide. For the latest version of AWS WAF, use the AWS WAFV2 API and see the AWS WAF Developer Guide. With the latest version, AWS WAF has a single set of endpoints for regional and global use. This is the AWS WAF Regional Classic API Reference for using AWS WAF Classic with the AWS resources, Elastic Load Balancing (ELB) Application Load Balancers and API Gateway APIs. The AWS WAF Classic actions and data types listed in the reference are available for protecting Elastic Load Balancing (ELB) Application Load Balancers and API Gateway APIs. You can use these actions and data types by means of the endpoints listed in AWS Regions and Endpoints. This guide is for developers who need detailed information about the AWS WAF Classic API actions, data types, and errors. For detailed information about AWS WAF Classic features and an overview of how to use the AWS WAF Classic API, see the AWS WAF Classic in the developer guide.