Mock sample for your project: BatchService API

Integrate with "BatchService API" from windows.net in no time with Mockoon's ready to use mock sample

BatchService

windows.net

Version: 2018-08-01.7.0


Use this API in your project

Integrate third-party APIs faster by using "BatchService API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

A client for issuing REST requests to the Azure Batch service.

Other APIs by windows.net

GraphRbacManagementClient

windows.net
The Graph RBAC Management Client

Other APIs in the same category

Amazon Lex Model Building V2

Provider API Client

azure.com

AWS IoT Secure Tunneling

AWS IoT Secure Tunneling AWS IoT Secure Tunnling enables you to create remote connections to devices deployed in the field. For more information about how AWS IoT Secure Tunneling works, see AWS IoT Secure Tunneling.

AWSKendraFrontendService

Amazon Kendra is a service for indexing large document sets.

ApiManagementClient

azure.com
Use these REST APIs for performing operations on Property entity associated with your Azure API Management deployment. API Management policies are a powerful capability of the system that allow the publisher to change the behavior of the API through configuration. Policies are a collection of statements that are executed sequentially on the request or response of an API. Policy statements can be constructed using literal text values, policy expressions, and properties. Each API Management service instance has a properties collection of key/value pairs that are global to the service instance. These properties can be used to manage constant string values across all API configuration and policies.

Amazon Macie

Amazon Macie Classic Amazon Macie Classic is a security service that uses machine learning to automatically discover, classify, and protect sensitive data in AWS. Macie Classic recognizes sensitive data such as personally identifiable information (PII) or intellectual property, and provides you with dashboards and alerts that give visibility into how this data is being accessed or moved. For more information, see the Amazon Macie Classic User Guide.

AWS Elemental MediaStore Data Plane

An AWS Elemental MediaStore asset is an object, similar to an object in the Amazon S3 service. Objects are the fundamental entities that are stored in AWS Elemental MediaStore.

Compute Admin Client

azure.com

FabricAdminClient

azure.com
Storage system operation endpoints and objects.

Amazon Managed Blockchain

Amazon Managed Blockchain is a fully managed service for creating and managing blockchain networks using open-source frameworks. Blockchain allows you to build applications where multiple parties can securely and transparently run transactions and share data without the need for a trusted, central authority. Managed Blockchain supports the Hyperledger Fabric and Ethereum open-source frameworks. Because of fundamental differences between the frameworks, some API actions or data types may only apply in the context of one framework and not the other. For example, actions related to Hyperledger Fabric network members such as CreateMember and DeleteMember do not apply to Ethereum. The description for each action indicates the framework or frameworks to which it applies. Data types and properties that apply only in the context of a particular framework are similarly indicated.

ApplicationInsightsManagementClient

azure.com
Azure Application Insights client for selecting pricing plans and options.

Amazon Lookout for Vision

This is the Amazon Lookout for Vision API Reference. It provides descriptions of actions, data types, common parameters, and common errors. Amazon Lookout for Vision enables you to find visual defects in industrial products, accurately and at scale. It uses computer vision to identify missing components in an industrial product, damage to vehicles or structures, irregularities in production lines, and even minuscule defects in silicon wafers — or any other physical item where quality is important such as a missing capacitor on printed circuit boards.