Mock sample for your project: LogicAppsManagementClient API

Integrate with "LogicAppsManagementClient API" from azure.com in no time with Mockoon's ready to use mock sample

LogicAppsManagementClient

azure.com

Version: 2016-06-01


Use this API in your project

Integrate third-party APIs faster by using "LogicAppsManagementClient API" ready-to-use mock sample. Mocking this API will help you accelerate your development lifecycles and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.
It also helps reduce your dependency on third-party APIs: no more accounts to create, API keys to provision, accesses to configure, unplanned downtime, etc.

Description

Other APIs by azure.com

AzureDeploymentManager

azure.com
REST APIs for orchestrating deployments using the Azure Deployment Manager (ADM). See https://docs.microsoft.com/en-us/azure/azure-resource-manager/deployment-manager-overview for more information.

MediaServicesManagementClient

azure.com
Media Services resource management APIs.

SubscriptionClient

azure.com
The User Subscription Management Client.

UsageManagementClient

azure.com

BatchManagement

azure.com

QnAMaker Runtime Client

azure.com
An API for QnAMaker runtime

FabricAdminClient

azure.com
Storage system operation endpoints and objects.

Anomaly Detector Client

azure.com
The Anomaly Detector API detects anomalies automatically in time series data. It supports two kinds of mode, one is for stateless using, another is for stateful using. In stateless mode, there are three functionalities. Entire Detect is for detecting the whole series with model trained by the time series, Last Detect is detecting last point with model trained by points before. ChangePoint Detect is for detecting trend changes in time series. In stateful mode, user can store time series, the stored time series will be used for detection anomalies. Under this mode, user can still use the above three functionalities by only giving a time range without preparing time series in client side. Besides the above three functionalities, stateful model also provide group based detection and labeling service. By leveraging labeling service user can provide labels for each detection result, these labels will be used for retuning or regenerating detection models. Inconsistency detection is a kind of group based detection, this detection will find inconsistency ones in a set of time series. By using anomaly detector service, business customers can discover incidents and establish a logic flow for root cause analysis.

AzureStack Azure Bridge Client

azure.com

BlueprintClient

azure.com
Azure Blueprints Client provides access to blueprint definitions, assignments, and artifacts, and related blueprint operations.

FabricAdminClient

azure.com
Volume operation endpoints and objects.

ContainerRegistryManagementClient

azure.com

Other APIs in the same category

Amazon Kinesis Video Streams Media

Azure Media Services

azure.com
This Swagger was generated by the API Framework.

Amazon EMR Containers

Amazon EMR on EKS provides a deployment option for Amazon EMR that allows you to run open-source big data frameworks on Amazon Elastic Kubernetes Service (Amazon EKS). With this deployment option, you can focus on running analytics workloads while Amazon EMR on EKS builds, configures, and manages containers for open-source applications. For more information about Amazon EMR on EKS concepts and tasks, see What is Amazon EMR on EKS. Amazon EMR containers is the API name for Amazon EMR on EKS. The emr-containers prefix is used in the following scenarios: It is the prefix in the CLI commands for Amazon EMR on EKS. For example, aws emr-containers start-job-run. It is the prefix before IAM policy actions for Amazon EMR on EKS. For example,"Action": [ "emr-containers:StartJobRun"]. For more information, see Policy actions for Amazon EMR on EKS. It is the prefix used in Amazon EMR on EKS service endpoints. For example, emr-containers.us-east-2.amazonaws.com. For more information, see Amazon EMR on EKS Service Endpoints.

Amazon CloudWatch

Amazon CloudWatch monitors your Amazon Web Services (Amazon Web Services) resources and the applications you run on Amazon Web Services in real time. You can use CloudWatch to collect and track metrics, which are the variables you want to measure for your resources and applications. CloudWatch alarms send notifications or automatically change the resources you are monitoring based on rules that you define. For example, you can monitor the CPU usage and disk reads and writes of your Amazon EC2 instances. Then, use this data to determine whether you should launch additional instances to handle increased load. You can also use this data to stop under-used instances to save money. In addition to monitoring the built-in metrics that come with Amazon Web Services, you can monitor your own custom metrics. With CloudWatch, you gain system-wide visibility into resource utilization, application performance, and operational health.

Amazon WorkSpaces

Amazon WorkSpaces Service Amazon WorkSpaces enables you to provision virtual, cloud-based Microsoft Windows and Amazon Linux desktops for your users.

AWS CodeStar Notifications

This AWS CodeStar Notifications API Reference provides descriptions and usage examples of the operations and data types for the AWS CodeStar Notifications API. You can use the AWS CodeStar Notifications API to work with the following objects: Notification rules, by calling the following: CreateNotificationRule, which creates a notification rule for a resource in your account. DeleteNotificationRule, which deletes a notification rule. DescribeNotificationRule, which provides information about a notification rule. ListNotificationRules, which lists the notification rules associated with your account. UpdateNotificationRule, which changes the name, events, or targets associated with a notification rule. Subscribe, which subscribes a target to a notification rule. Unsubscribe, which removes a target from a notification rule. Targets, by calling the following: DeleteTarget, which removes a notification rule target (SNS topic) from a notification rule. ListTargets, which lists the targets associated with a notification rule. Events, by calling the following: ListEventTypes, which lists the event types you can include in a notification rule. Tags, by calling the following: ListTagsForResource, which lists the tags already associated with a notification rule in your account. TagResource, which associates a tag you provide with a notification rule in your account. UntagResource, which removes a tag from a notification rule in your account. For information about how to use AWS CodeStar Notifications, see link in the CodeStarNotifications User Guide.

AWS Auto Scaling Plans

AWS Auto Scaling Use AWS Auto Scaling to create scaling plans for your applications to automatically scale your scalable AWS resources. API Summary You can use the AWS Auto Scaling service API to accomplish the following tasks: Create and manage scaling plans Define target tracking scaling policies to dynamically scale your resources based on utilization Scale Amazon EC2 Auto Scaling groups using predictive scaling and dynamic scaling to scale your Amazon EC2 capacity faster Set minimum and maximum capacity limits Retrieve information on existing scaling plans Access current forecast data and historical forecast data for up to 56 days previous To learn more about AWS Auto Scaling, including information about granting IAM users required permissions for AWS Auto Scaling actions, see the AWS Auto Scaling User Guide.

Amazon HealthLake

Amazon HealthLake is a HIPAA eligibile service that allows customers to store, transform, query, and analyze their FHIR-formatted data in a consistent fashion in the cloud.

Amazon Connect Contact Lens

Contact Lens for Amazon Connect enables you to analyze conversations between customer and agents, by using speech transcription, natural language processing, and intelligent search capabilities. It performs sentiment analysis, detects issues, and enables you to automatically categorize contacts. Contact Lens for Amazon Connect provides both real-time and post-call analytics of customer-agent conversations. For more information, see Analyze conversations using Contact Lens in the Amazon Connect Administrator Guide.

Application Migration Service

The Application Migration Service service.

Amazon Kinesis Video Streams

Amazon Comprehend

Amazon Comprehend is an AWS service for gaining insight into the content of documents. Use these actions to determine the topics contained in your documents, the topics they discuss, the predominant sentiment expressed in them, the predominant language used, and more.