Mock sample for your project: Compute Admin Client API

Integrate with "Compute Admin Client API" from azure.com in no time with Mockoon's ready to use mock sample

Compute Admin Client

azure.com

Version: 2015-12-01-preview


Use this API in your project

Start working with "Compute Admin Client API" right away by using this ready-to-use mock sample. API mocking can greatly speed up your application development by removing all the tedious tasks or issues: API key provisioning, account creation, unplanned downtime, etc.
It also helps reduce your dependency on third-party APIs and improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Other APIs by azure.com

Cosmos DB

azure.com
Azure Cosmos DB Database Service Resource Provider REST API

Security Center

azure.com
API spec for Microsoft.Security (Azure Security Center) resource provider

Azure Log Analytics - Operations Management

azure.com
Azure Log Analytics API reference for Solution.

Mixed Reality

azure.com
Mixed Reality Resource Provider Remote Rendering Resource API

MonitorManagementClient

azure.com

Relay

azure.com
Use these API to manage Azure Relay resources through Azure Resource Manager.

AppServiceEnvironments API Client

azure.com

Azure SQL Database

azure.com
Provides read and update functionality for Azure SQL Database geo backup policies.

RecoveryServicesBackupClient

azure.com

Azure Media Services

azure.com
This Swagger was generated by the API Framework.

Azure Action Groups

azure.com

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

Other APIs in the same category

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

AWS Config

Config Config provides a way to keep track of the configurations of all the Amazon Web Services resources associated with your Amazon Web Services account. You can use Config to get the current and historical configurations of each Amazon Web Services resource and also to get information about the relationship between the resources. An Amazon Web Services resource can be an Amazon Compute Cloud (Amazon EC2) instance, an Elastic Block Store (EBS) volume, an elastic network Interface (ENI), or a security group. For a complete list of resources currently supported by Config, see Supported Amazon Web Services resources. You can access and manage Config through the Amazon Web Services Management Console, the Amazon Web Services Command Line Interface (Amazon Web Services CLI), the Config API, or the Amazon Web Services SDKs for Config. This reference guide contains documentation for the Config API and the Amazon Web Services CLI commands that you can use to manage Config. The Config API uses the Signature Version 4 protocol for signing requests. For more information about how to sign a request with this protocol, see Signature Version 4 Signing Process. For detailed information about Config features and their associated actions or commands, as well as how to work with Amazon Web Services Management Console, see What Is Config in the Config Developer Guide.

Amazon Chime

The Amazon Chime API (application programming interface) is designed for developers to perform key tasks, such as creating and managing Amazon Chime accounts, users, and Voice Connectors. This guide provides detailed information about the Amazon Chime API, including operations, types, inputs and outputs, and error codes. It also includes some server-side API actions to use with the Amazon Chime SDK. For more information about the Amazon Chime SDK, see Using the Amazon Chime SDK in the Amazon Chime Developer Guide. You can use an AWS SDK, the AWS Command Line Interface (AWS CLI), or the REST API to make API calls. We recommend using an AWS SDK or the AWS CLI. Each API operation includes links to information about using it with a language-specific AWS SDK or the AWS CLI. Using an AWS SDK You don't need to write code to calculate a signature for request authentication. The SDK clients authenticate your requests by using access keys that you provide. For more information about AWS SDKs, see the AWS Developer Center. Using the AWS CLI Use your access keys with the AWS CLI to make API calls. For information about setting up the AWS CLI, see Installing the AWS Command Line Interface in the AWS Command Line Interface User Guide. For a list of available Amazon Chime commands, see the Amazon Chime commands in the AWS CLI Command Reference. Using REST APIs If you use REST to make API calls, you must authenticate your request by providing a signature. Amazon Chime supports signature version 4. For more information, see Signature Version 4 Signing Process in the Amazon Web Services General Reference. When making REST API calls, use the service name chime and REST endpoint https://service.chime.aws.amazon.com. Administrative permissions are controlled using AWS Identity and Access Management (IAM). For more information, see Identity and Access Management for Amazon Chime in the Amazon Chime Administration Guide.

Application Migration Service

The Application Migration Service service.

Amazon Athena

Amazon Athena is an interactive query service that lets you use standard SQL to analyze data directly in Amazon S3. You can point Athena at your data in Amazon S3 and run ad-hoc queries and get results in seconds. Athena is serverless, so there is no infrastructure to set up or manage. You pay only for the queries you run. Athena scales automatically—executing queries in parallel—so results are fast, even with large datasets and complex queries. For more information, see What is Amazon Athena in the Amazon Athena User Guide. If you connect to Athena using the JDBC driver, use version 1.1.0 of the driver or later with the Amazon Athena API. Earlier version drivers do not support the API. For more information and to download the driver, see Accessing Amazon Athena with JDBC. For code samples using the Amazon Web Services SDK for Java, see Examples and Code Samples in the Amazon Athena User Guide.

FabricAdminClient

azure.com
Logical network operation endpoints and objects.

Amazon Glacier

Amazon S3 Glacier (Glacier) is a storage solution for "cold data." Glacier is an extremely low-cost storage service that provides secure, durable, and easy-to-use storage for data backup and archival. With Glacier, customers can store their data cost effectively for months, years, or decades. Glacier also enables customers to offload the administrative burdens of operating and scaling storage to AWS, so they don't have to worry about capacity planning, hardware provisioning, data replication, hardware failure and recovery, or time-consuming hardware migrations. Glacier is a great storage choice when low storage cost is paramount and your data is rarely retrieved. If your application requires fast or frequent access to your data, consider using Amazon S3. For more information, see Amazon Simple Storage Service (Amazon S3). You can store any kind of data in any format. There is no maximum limit on the total amount of data you can store in Glacier. If you are a first-time user of Glacier, we recommend that you begin by reading the following sections in the Amazon S3 Glacier Developer Guide : What is Amazon S3 Glacier - This section of the Developer Guide describes the underlying data model, the operations it supports, and the AWS SDKs that you can use to interact with the service. Getting Started with Amazon S3 Glacier - The Getting Started section walks you through the process of creating a vault, uploading archives, creating jobs to download archives, retrieving the job output, and deleting archives.

Amazon Fraud Detector

This is the Amazon Fraud Detector API Reference. This guide is for developers who need detailed information about Amazon Fraud Detector API actions, data types, and errors. For more information about Amazon Fraud Detector features, see the Amazon Fraud Detector User Guide.

Workload Monitor

azure.com
APIs for workload monitoring

GuestConfiguration

azure.com

VirtualWANAsAServiceManagementClient

azure.com
REST API for Azure VirtualWAN As a Service.

Amazon WorkDocs

The WorkDocs API is designed for the following use cases: File Migration: File migration applications are supported for users who want to migrate their files from an on-premises or off-premises file system or service. Users can insert files into a user directory structure, as well as allow for basic metadata changes, such as modifications to the permissions of files. Security: Support security applications are supported for users who have additional security needs, such as antivirus or data loss prevention. The API actions, along with AWS CloudTrail, allow these applications to detect when changes occur in Amazon WorkDocs. Then, the application can take the necessary actions and replace the target file. If the target file violates the policy, the application can also choose to email the user. eDiscovery/Analytics: General administrative applications are supported, such as eDiscovery and analytics. These applications can choose to mimic or record the actions in an Amazon WorkDocs site, along with AWS CloudTrail, to replicate data for eDiscovery, backup, or analytical applications. All Amazon WorkDocs API actions are Amazon authenticated and certificate-signed. They not only require the use of the AWS SDK, but also allow for the exclusive use of IAM users and roles to help facilitate access, trust, and permission policies. By creating a role and allowing an IAM user to access the Amazon WorkDocs site, the IAM user gains full administrative visibility into the entire Amazon WorkDocs site (or as set in the IAM policy). This includes, but is not limited to, the ability to modify file permissions and upload any file to any user. This allows developers to perform the three use cases above, as well as give users the ability to grant access on a selective basis using the IAM model.