Mock sample for your project: Amazon Mechanical Turk API

Integrate with "Amazon Mechanical Turk API" from amazonaws.com in no time with Mockoon's ready to use mock sample

Amazon Mechanical Turk

amazonaws.com

Version: 2017-01-17


Use this API in your project

Speed up your application development by using "Amazon Mechanical Turk API" ready-to-use mock sample. Mocking this API will allow you to start working in no time. No more accounts to create, API keys to provision, accesses to configure, unplanned downtime, just work.
It also improves your integration tests' quality and reliability by accounting for random failures, slow response time, etc.

Description

Amazon Mechanical Turk API Reference

Other APIs by amazonaws.com

Application Auto Scaling

With Application Auto Scaling, you can configure automatic scaling for the following resources: Amazon AppStream 2.0 fleets Amazon Aurora Replicas Amazon Comprehend document classification and entity recognizer endpoints Amazon DynamoDB tables and global secondary indexes throughput capacity Amazon ECS services Amazon ElastiCache for Redis clusters (replication groups) Amazon EMR clusters Amazon Keyspaces (for Apache Cassandra) tables Lambda function provisioned concurrency Amazon Managed Streaming for Apache Kafka broker storage Amazon SageMaker endpoint variants Spot Fleet (Amazon EC2) requests Custom resources provided by your own applications or services API Summary The Application Auto Scaling service API includes three key sets of actions: Register and manage scalable targets - Register Amazon Web Services or custom resources as scalable targets (a resource that Application Auto Scaling can scale), set minimum and maximum capacity limits, and retrieve information on existing scalable targets. Configure and manage automatic scaling - Define scaling policies to dynamically scale your resources in response to CloudWatch alarms, schedule one-time or recurring scaling actions, and retrieve your recent scaling activity history. Suspend and resume scaling - Temporarily suspend and later resume automatic scaling by calling the RegisterScalableTarget API action for any Application Auto Scaling scalable target. You can suspend and resume (individually or in combination) scale-out activities that are triggered by a scaling policy, scale-in activities that are triggered by a scaling policy, and scheduled scaling. To learn more about Application Auto Scaling, including information about granting IAM users required permissions for Application Auto Scaling actions, see the Application Auto Scaling User Guide.
IoT IoT provides secure, bi-directional communication between Internet-connected devices (such as sensors, actuators, embedded devices, or smart appliances) and the Amazon Web Services cloud. You can discover your custom IoT-Data endpoint to communicate with, configure rules for data processing and integration with other services, organize resources associated with each device (Registry), configure logging, and create and manage policies and credentials to authenticate devices. The service endpoints that expose this API are listed in Amazon Web Services IoT Core Endpoints and Quotas. You must use the endpoint for the region that has the resources you want to access. The service name used by Amazon Web Services Signature Version 4 to sign the request is: execute-api. For more information about how IoT works, see the Developer Guide. For information about how to use the credentials provider for IoT, see Authorizing Direct Calls to Amazon Web Services Services.

Amazon Elastic File System

Amazon Elastic File System Amazon Elastic File System (Amazon EFS) provides simple, scalable file storage for use with Amazon EC2 instances in the Amazon Web Services Cloud. With Amazon EFS, storage capacity is elastic, growing and shrinking automatically as you add and remove files, so your applications have the storage they need, when they need it. For more information, see the Amazon Elastic File System API Reference and the Amazon Elastic File System User Guide.

Elastic Load Balancing

Elastic Load Balancing A load balancer distributes incoming traffic across targets, such as your EC2 instances. This enables you to increase the availability of your application. The load balancer also monitors the health of its registered targets and ensures that it routes traffic only to healthy targets. You configure your load balancer to accept incoming traffic by specifying one or more listeners, which are configured with a protocol and port number for connections from clients to the load balancer. You configure a target group with a protocol and port number for connections from the load balancer to the targets, and with health check settings to be used when checking the health status of the targets. Elastic Load Balancing supports the following types of load balancers: Application Load Balancers, Network Load Balancers, Gateway Load Balancers, and Classic Load Balancers. This reference covers the following load balancer types: Application Load Balancer - Operates at the application layer (layer 7) and supports HTTP and HTTPS. Network Load Balancer - Operates at the transport layer (layer 4) and supports TCP, TLS, and UDP. Gateway Load Balancer - Operates at the network layer (layer 3). For more information, see the Elastic Load Balancing User Guide. All Elastic Load Balancing operations are idempotent, which means that they complete at most one time. If you repeat an operation, it succeeds.

Amazon Cognito Identity

Amazon Cognito Federated Identities Amazon Cognito Federated Identities is a web service that delivers scoped temporary credentials to mobile devices and other untrusted environments. It uniquely identifies a device and supplies the user with a consistent identity over the lifetime of an application. Using Amazon Cognito Federated Identities, you can enable authentication with one or more third-party identity providers (Facebook, Google, or Login with Amazon) or an Amazon Cognito user pool, and you can also choose to support unauthenticated access from your app. Cognito delivers a unique identifier for each user and acts as an OpenID token provider trusted by AWS Security Token Service (STS) to access temporary, limited-privilege AWS credentials. For a description of the authentication flow from the Amazon Cognito Developer Guide see Authentication Flow. For more information see Amazon Cognito Federated Identities.

Amazon CloudHSM

AWS CloudHSM Service This is documentation for AWS CloudHSM Classic. For more information, see AWS CloudHSM Classic FAQs, the AWS CloudHSM Classic User Guide, and the AWS CloudHSM Classic API Reference. For information about the current version of AWS CloudHSM, see AWS CloudHSM, the AWS CloudHSM User Guide, and the AWS CloudHSM API Reference.

Amazon EMR

Amazon EMR is a web service that makes it easier to process large amounts of data efficiently. Amazon EMR uses Hadoop processing combined with several Amazon Web Services services to do tasks such as web indexing, data mining, log file analysis, machine learning, scientific simulation, and data warehouse management.

AWS App Runner

AWS App Runner AWS App Runner is an application service that provides a fast, simple, and cost-effective way to go directly from an existing container image or source code to a running service in the AWS cloud in seconds. You don't need to learn new technologies, decide which compute service to use, or understand how to provision and configure AWS resources. App Runner connects directly to your container registry or source code repository. It provides an automatic delivery pipeline with fully managed operations, high performance, scalability, and security. For more information about App Runner, see the AWS App Runner Developer Guide. For release information, see the AWS App Runner Release Notes. To install the Software Development Kits (SDKs), Integrated Development Environment (IDE) Toolkits, and command line tools that you can use to access the API, see Tools for Amazon Web Services. Endpoints For a list of Region-specific endpoints that App Runner supports, see AWS App Runner endpoints and quotas in the AWS General Reference.

AWS Direct Connect

Direct Connect links your internal network to an Direct Connect location over a standard Ethernet fiber-optic cable. One end of the cable is connected to your router, the other to an Direct Connect router. With this connection in place, you can create virtual interfaces directly to the Cloud (for example, to Amazon EC2 and Amazon S3) and to Amazon VPC, bypassing Internet service providers in your network path. A connection provides access to all Regions except the China (Beijing) and (China) Ningxia Regions. Amazon Web Services resources in the China Regions can only be accessed through locations associated with those Regions.

AWS Database Migration Service

Database Migration Service Database Migration Service (DMS) can migrate your data to and from the most widely used commercial and open-source databases such as Oracle, PostgreSQL, Microsoft SQL Server, Amazon Redshift, MariaDB, Amazon Aurora, MySQL, and SAP Adaptive Server Enterprise (ASE). The service supports homogeneous migrations such as Oracle to Oracle, as well as heterogeneous migrations between different database platforms, such as Oracle to MySQL or SQL Server to PostgreSQL. For more information about DMS, see What Is Database Migration Service? in the Database Migration Service User Guide.

Amazon Simple Email Service

Amazon Simple Email Service This document contains reference information for the Amazon Simple Email Service (Amazon SES) API, version 2010-12-01. This document is best used in conjunction with the Amazon SES Developer Guide. For a list of Amazon SES endpoints to use in service requests, see Regions and Amazon SES in the Amazon SES Developer Guide.

AWS EC2 Instance Connect

Amazon EC2 Instance Connect enables system administrators to publish one-time use SSH public keys to EC2, providing users a simple and secure way to connect to their instances.

Other APIs in the same category

AutomationManagement

azure.com

Anomaly Detector Client

azure.com
The Anomaly Detector API detects anomalies automatically in time series data. It supports two kinds of mode, one is for stateless using, another is for stateful using. In stateless mode, there are three functionalities. Entire Detect is for detecting the whole series with model trained by the time series, Last Detect is detecting last point with model trained by points before. ChangePoint Detect is for detecting trend changes in time series. In stateful mode, user can store time series, the stored time series will be used for detection anomalies. Under this mode, user can still use the above three functionalities by only giving a time range without preparing time series in client side. Besides the above three functionalities, stateful model also provide group based detection and labeling service. By leveraging labeling service user can provide labels for each detection result, these labels will be used for retuning or regenerating detection models. Inconsistency detection is a kind of group based detection, this detection will find inconsistency ones in a set of time series. By using anomaly detector service, business customers can discover incidents and establish a logic flow for root cause analysis.

Anomaly Finder Client

azure.com
The Anomaly Finder API detects anomalies automatically in time series data. It supports two functionalities, one is for detecting the whole series with model trained by the timeseries, another is detecting last point with model trained by points before. By using this service, business customers can discover incidents and establish a logic flow for root cause analysis.

Customer Lockbox

azure.com
Azure Customer Lockbox API Reference

Azure Media Services

azure.com
This Swagger was generated by the API Framework.

PolicyStatesClient

azure.com

NetworkManagementClient

azure.com
The Microsoft Azure Network management API provides a RESTful set of web services that interact with Microsoft Azure Networks service to manage your network resources. The API has entities that capture the relationship between an end user and the Microsoft Azure Networks service.

Amazon Forecast Service

Provides APIs for creating and managing Amazon Forecast resources.

LUIS Authoring Client

azure.com

Face Client

azure.com
An API for face detection, verification, and identification.

CustomerInsightsManagementClient

azure.com
The Azure Customer Insights management API provides a RESTful set of web services that interact with Azure Customer Insights service to manage your resources. The API has entities that capture the relationship between an end user and the Azure Customer Insights service.

portal

azure.com
Allows creation and deletion of Azure Shared Dashboards.